Chapter 15 Part 2

Warm Up

 How much energy is required to raise 50 g of water by 10.5 °C?

 If you were told that it required 44.7 kJ/mol for NaOH to dissolve in water and you were supplied with 0.5 mols of NaOH. Can you figure out how to find the energy required?

Today's Agenda

 QOTD: What is enthalpy and how do we calculate the energy associated with a chemical reaction?

- Enthalpy
- Calculating ΔH

• Homework – Chapter 15 80-94 evens

Chemical Potential Energy

• Energy that is stored in a substance because of its chemical composition.

Breaking bonds COSTS energy

Enthalpy (H)

• Heat content of a system at a constant pressure.

- Change in enthalpy for a reaction $\Delta {\rm H}_{\rm rxn}$
 - ΔH_{rxn} represents the energy that is either **REQUIRED** or **RELEASED** in order to break bonds and form new ones

Enthalpy of Formation (H_f)

- Energy change during the formation of substance from the elements.
- ΔH_f for elements = 0 kJ/mol Examples include C, O₂, Cl₂ all have ZERO enthalpy of formation!

We can use tablulated values of ΔH_f to find enthalpy for reactions!

Endothermic vs. Exothermic Reactions

• Remember, chemical reactions are EITHER:

- Endothermic energy **REQUIRED**
 - The reactants need energy. Heat is a reactant!
 - $-H_{products} > H_{reactants}$
- Exothermic energy **RELEASED**
 - The reactants release energy. Heat is a product!
 - $-H_{products} < H_{reactants}$

Calculating $\Delta {\rm H}_{\rm rxn}$

• Equation:

$$\Delta H_{rxn} = \Sigma n \Delta H_{products} - \Sigma n \Delta H_{reactants}$$

Stoichiometric coefficients from balanced equation!

The total energy for the reaction is the difference between the enthalpy of forming products and breaking up reactants.

Sign of ΔH

- If energy is left over after a reaction has completed:
 - Reaction is EXOTHERMIC and ΔH_{rxn} is negative!
 - Heat is a product.
- If energy must be added to reactants for the reaction to proceed
 - Reaction is ENDOTHERMIC and ΔH_{rxn} is positive!
 - Heat is a reactant.

Calculating ΔH_{rxn} H₂S + 4F₂ \rightarrow 2HF + SF₆

 $\begin{array}{l} \Delta H_{H2S} = -21 \ \text{kJ/mol} \\ \Delta H_{HF} = -273 \ \text{kJ/mol} \\ \Delta H_{SF6} = -1220 \ \text{kJ/mol} \\ \Delta H_{F2} = 0 \ \text{kJ/mol} \ (\text{remember its elemental!}) \end{array}$

Your Turn

- $\Delta H_{C8H18} = -49.8 \text{ kJ/mol}$ $\Delta H_{C02} = -393.5 \text{ kJ/mol}$ $\Delta H_{H20} = -241.8 \text{ kJ/mol}$ $\Delta H_{O2} = 0 \text{ kJ/mol} \text{ (remember its elemental!)}$
- What is the ΔH_{rxn} for the combustion of octane? 2C₈H₁₈ + 25 O₂ \rightarrow 16 CO₂ + 18 H₂O

Use ΔH_{rxn} to solve for ΔH_f CaCO₃ \rightarrow CaO + CO₂ ΔH_{rxn} = 178.1 kJ/mol

 $\Delta H_{CaO} = -635.5 \text{ kJ/mol}$ $\Delta H_{CO2} = -393.5 \text{ kJ/mol}$

What is ΔH_{CaCO3} ?

Warm Up!

Identify the products and reactants

$$C_2H_{4(g)} + H_{2(g)} \rightarrow C_2H_{6(g)}$$

• Find ΔH_{rxn} $\Delta H_{C2H4} = 52.3 \text{ kJ/mol}$ $\Delta H_{H2} = 0 \text{ kJ/mol}$ $\Delta H_{C2H6} = -84.7 \text{ kJ/mol}$

Today's Agenda

• QOTD: How can we use enthalpy as a conversion factor to determine energy output?

- Enthalpy of solution
- Energy conversion problems

Molarity Lab Due today (worksheet only)

Molar Heat of Solution (ΔH_{soln})

 As a compound dissolves, energy is released or absorbed in the solvation process.

Example:

$NaOH \rightarrow Na^+ + OH^-$

Practice Problem

What is the heat change when 80 g of NaOH dissolves in water (∆H_{soln} = -44.5 kJ/mol)?
NaOH → Na⁺ + OH⁻ + 44.5 kJ/mol

Use enthalpy as a conversion factor:

- 1.80g \rightarrow convert to moles!
- 2. Use moles and convert to kJ with enthalpy!

Your Turn!

• What is the heat change when 25 g of HCl is solvated ($\Delta H_{soln} = -74.84 \text{ kJ/mol}$)?

• How much heat energy is created when 380 g of CH_3OH combusts if $\Delta H_{comb} = -726.5$ kJ/mol?

Calorimetry of Solvation

If you dissolve 5 g of KOH (∆H_{soln} = -57.61 kJ/mol) in 35 g of water in a calorimeter. What temperature change should you observe?

- Find q for solvation
- q_{solvation} = mc∆T (**You must ADD masses of solid and water!**)
- Solve for ΔT

Practice Problems

• An aqueous ammonia (NH₃) solution is created by adding 8 g of NH₃ to 100 g of water. What is the temperature change observed if the Δ H_{soln} = -30.5 kJ/mol?

 How many grams of table salt (NaCl) were added to water to change the temperature by 5 °C if the total mass is 23 g (ΔH_{soln} = 3.88 kJ/mol)?

Mixed Review Warm Up

- Write and balance the combustion of C_3H_8
- Find ΔH_{f} for C₃H₈ using the following info: $\Delta H_{H2O} = -241.8 \text{ kJ/mol}, \Delta H_{CO2} = -393.5 \text{ kJ/mol},$ $\Delta H_{O2} = 0 \text{ kJ/mol}, \text{ and } \Delta H_{rxn} = 2200 \text{ kJ/mol}.$
- What is the temperature change associated with the solvation of 10 g of NaOH in 300 g of water? $\Delta H_{soln} = -44.7 \text{ kJ/mol}$

How many grams of C_3H_8 must you use to heat 105 L of water from 20 – 600 °C? ΔH_{rxn} = 2200 kJ/mol

Agenda for Monday

• Review for Quiz!

- Quiz tomorrow using Enthalpy as a conversion factor, using heat as fuel, and $\Delta H_{rxn} = \Sigma n \Delta H_{products} - \Sigma n \Delta H_{reactants}$
- Quiz Review worksheet due tomorrow.

Energy for Fuel

- Ethanol is considered as an alternative fuel source. How much energy does it output??
- You use ethanol (C_2H_6O) as fuel to heat 50 L of water from 18 °C to 86 °C ($\Delta H_{comb} = -726.5$ kJ/mol for ethanol). How much ethanol must you burn?

• Find energy needed for water and then use $\Delta {\rm H}\,{\rm as}$ a conversion factor.

Compare to Octane

 Now you use octane (C₈H₁₈) as a fuel to heat 50 L of water from 15 °C to 83 °C (ΔH_{comb} = -5074.2 kJ/mol for octane). How much octane must you burn?

• Now try propane C_3H_8 ($\Delta H_{comb} = -2200 \text{ kJ/mol}$ for propane)...

• Which fuel is most efficient? Why