Naming and Writing Formulas for Acids!

- 1st determine if the compound is an acid
 - a. If you are given a formula, is the first element
 hydrogen? If yes, it's an ACID so follow the acid rules
 - b. If given the name, is the word acid in the name?
- Acid Naming Rules
- If the anion name ends in –IDE

The acid name will be hydro-----ic acid.

Br⁻¹ ends in ide, the acid is HBr = hydrobromic acid

Naming Acids con't

• The anion sulfate $=SO_4^{2-}$ ends in ATE

Ending changes to -IC H_2SO_4 = Sulfuric acid

The anion nitrite = NO_2^{1-} ends in ITE Ending changes to -OUS HNO₂ = Nitrous acid

If anion is...

• ide \rightarrow goes to hydro-----ic acid

• ate \rightarrow goes to -----ic acid

ite → goes to -----ous acid

Acid Formula Writing Rules

- Identify anion name and formula
- Identify anion charge
- Balance anion charge with equal number of hydrogens.
- Hydrogens precede the anion formula.

Formula Writing

- Chromic acid
- Work backwards!! Hmmm if it ends in ic it used to end in ate!
- Anion = chromate CrO_4^{2-}

 If charge is 2- How many H's balance it out? What ion does H form? H⁺ H₂CrO₄

Formula Writing

- Hydroiodic acid
- Work backwards!! Hmmm if it has hydro and ends in ic – it used to end in ide!
- Anion = iodide

• If charge is 1- How many H's balance it out?

HI

guys.

More formula writing...

- Phosphorous acid
- Work backwards!! Hmmm if it ends in ous it used to end in ite!
- Anion = phosphite PO_3^{3-}

• If charge is 3- How many H's balance it out? H_3PO_3

Now your turn...

- Name these!
- H₂CO₃
- HNO₃
- HF
- HBrO₂
- Write formulas for:
- Hydrochloric acid
- Perchloric acid
- Sulfurous acid

Warm Up!

- When naming acids if the anion ends in
- -ide the acid name contains _
- -ate the acid name ends in _____
- -ite the acid name ends in _

What determines the number of H⁺ atoms are needed for an acid?

How many H's are needed in phosphoric acid?

Today's Agenda

• (Last naming day!) How do we name and write formulas for molecular compounds?

- Review acid naming
- Name and write formulas for molecular compounds
- Practice!

Acid Practice

- 1. HCl
- 2. HNO₂
- 3. H₃PO₄
- 4. HCN
- 5. HIO₄
- 6. H₃PO₃

- 1. sulfurous acid
- 2. hydrosulfuric acid
- 3. chlorous acid
- 4. bromic acid
- 5. hydroselenic acid
- 6. chromic acid

Molecular Compounds!

- Molecular compounds are made from two (or more) non-metals.
- 2. Molecular Compound Naming Rules.
 - a. Prefixes are used to denote the number of atoms in each element in the compound

mono	penta	nona
di	hexa	deca
tri	hepta	hendeca
tetra	octa	dodeca

Naming Rules

- b. When there is only one atom of the first element in the compound, the prefix, "mono" should be omitted.
- c. Change the ending of the last element to "ide".

N₂O₇ - 2 nitrogens and 7 oxygens prefix for 2 is di prefix for 7 is hepta

Examples for Naming

• CO₂ - 1 carbon, 2 oxygens

since there is only one carbon and it's the first element, we DO NOT need a prefix. the prefix for 2 is di Carbon Dioxide

- EXTRA
- P₄S₁₀ 4 phosphorous, 10 sulfurs the prefix for 4 is tetra the prefix for 10 is deca

Tetraphosphorous decasulfide

Molecular Compound Formula Rules

• Prefixes are used to denote the number of atoms in each element in the compound.

- Example:
- Nitrogen monoxide one nitrogen (no prefix) and one oxygen (mono = 1)
- Dinitrogen trioxide two nitrogens (di = 2) and three oxygens (three=3)
 N₂O₃

Try These!

- Name these
- PF₃
- SO₃
- ICI
- Write formulas for these
- Dinitrogen monoxide
- Bromine pentafluoride
- Boron tribromide

Warm Up!

• Acid Naming

HCI

- H₂SO₄ HNO₂
- Molecular Formula Writing

Nitrogen dioxide Trisulfur pentoxide

Dihydrogen

Today's Agenda

• What is the difference between an ionic compound, molecular compound, and acid?

- Distinguish different types of compounds.
- Review!!

Mixed Review – 1st ID Ionic, Acid, Molecular

- 1. HIO₄
- 2. H₃PO₃
- 3. PF₃
- 4. SCl₅
- 5. $Zn(NO_3)_2$
- 6. $Fe_2(SO_4)_3$

- A. chlorous acid
- B. bromic acid
- C. hydroselenic acid
- D. dinitrogen monoxide
- E. Boron tribromide
- F. Nickel(II) nitrate
- G. Cobalt (III) oxide

Warm Up!

- What is the charge on Cu in Cu₂O?
- What is the charge on Ti in TiPO₄?
- What is the charge on Ni in NiCl₂?

- How would you find the molecular mass of these compounds?
- What is the molecular mass of NiCl₂?

Todays Agenda

- How can we use ratios to experimentally determine chemical formulas?
- Quiz!
- Using ratios to solve word problems.
- Atomic mass and molecular mass and how they relate to actual mass.
- Homework: Prelab setup in notebook and prelab practice problems. Background info due Tues. Problems due Wed.

Ratios

• A ratio is just a comparison of two different things.

- Example: if there are 15 females and 20 males in a group (total <u>35</u>).
- The ratio would be 15/20 or 15:20.
- If there were 7 black labs and 12 golden labs in a doggy daycare, what's the ratio of black to goldens? <u>7/12 or 7:12</u>

Ratio Problems

- If there are 50 total candies, 22 chocolate santas and 28 candy canes, what is the ratio of santas to candy canes? <u>22/28</u>
- If there were 75 total candies with the same ratio, how many santas would there be?

22 santas out of 50 total – 22/50

22/50 = x/75 $\frac{22}{50} = \frac{x}{75}$ x = 33 santas

Try these

 The ratio of Kate's stickers to Jenny's stickers is 7:4. Kate has 21 stickers. How many stickers does Jenny have?

 Chef Robert's secret recipe requires 7 eggs for every 2 cups of flour. How many eggs will he need if he uses 8 cups of flour?

Warm Up!

- Ammonia is a compound consisting of a 1 : 3 ratio of nitrogen and hydrogen atoms.
- (a) If a sample of ammonia contains 1563 nitrogen atoms, how many atoms of hydrogen are present?
- (b) If a sample of ammonia contains 1425 hydrogen atoms, how many nitrogen atoms are present?

Today's Agenda

• How can we determine the chemical formula by monitoring a reaction and solving ratio's?

- Discuss math problems relevant to lab.
- Check pre-lab discuss background information and procedures.
- Start the lab!

Lab Experiment

- Use masses that WE measure to determine the chemical formula.
- Remember that each element has a MASS associated with it! Read this from the periodic table!
- These masses are related to mass that we can measure with balances.

Equation

$$\frac{M_B}{M_A} = \frac{AM_B \times number \text{ of } B \text{ atoms}}{AM_A \times number \text{ of } A \text{ atoms}}$$

Given AB_x Find x!

 $M_{B} = 0.3$ $M_{A} = 0.25$ $AM_{B} = 40$ $AM_{A} = 66$

The Experiment

• Know M_A and we will find M_{ABx} - How will we find M_{Bx} ?

 $M_{ABx} - M_A = M_{Bx}$

• Use atomic masses to find x!

If we make 0.57g of M_{ABx} and we started with 0.25g of $M_{A_{i}}$ (AM_A=58.6, AM_B = 25.1), what is x? If the charge on B is -1 what is the charge on the A ion?

AB₃, A³⁺

Warm Up!

- What are the two types of bonds?
- What are two criteria for forming an ionic compound?
- What type of ions do metals form?
- Give one example of an ionic compound, an acid, and a molecular compound.

Today's Agenda

• Welcome back!

- Review naming and properties of ionic compounds.
- Properties of metal compounds
- Ionic vs. covalent bonds
- Homework: Ch 7 (section 2 & 4) 81, 82, 83, 87, 89, 91, 93, 94 and Ch 8 – 78-86 evens

Review!

- Name these
- 1) FeCl₃ 2) Ag₃AsO₄ 3) Ba(OH)₂ 4) H₂O 5) H₃PO₃
- Write the formulas for these compounds
- 6) aluminum iodide 7) ammonium phosphate
- 8) nitric acid 9) hydrogen sulfide
- Separate the ions, give their names and charges and name the compound. Change the anion into the acid and name that acid.

10) MgCO₃

Ionic Compounds

- Ionic compounds are made from ions with <u>opposite</u> charge.
- Cations are formed from <u>metals</u>. Their charge is called their <u>oxidation</u> state (or number).
- The oxidation state of Mn in MnCl₂ is _____.
 (What you made in lab!) +2

Properties of Ionic Compounds

 Melting point, boiling point, and hardness of these crystals depend on how they organize themselves in a solid crystal

____ melting and boiling points, hard crystals

Goigduction of electricity depends on how easily these _____ can move around. Salt crystals _____ allow for ions to move! _____ ions _____ do not

Electrolytes

 When ionic compounds are <u>liqui</u> or if they are <u>dissoline</u> solution, they can conduct an electric current.

Electrolytes! Our bodies run using electrical signals and salt pumps, so we NEED electrolytes! If you sweat a lot or are sick and do not replenish your "salt" ions, you get sick because you throw off your body's normal processes!

Metallic Compounds

• Compounds make only of metals, NOT ionic!

 Bonding of metals are similar to ionic compounds because they are based on the <u>attraction</u> of particles .

 8 – 12 metal atoms closely surround each metal atom in a <u>lattice</u>.

Electron Sea Model

 Electrons are not directly attached to any metal atom but are <u>delocalized</u>.

 Metals are <u>great</u> conductors of electricity because their electrons can <u>flow</u> throughout the metallic solid structure.

Properties of Metals

- High boiling points and melting points.
- Durable, malleable, and ductile.
- <u>electrons</u> move leating move as part of an electric current.
- <u>–</u> transition metals are harder and stronger than alkali metals because of Hardness and strength an increase in electrons

Alloys

- Metal alloys mixture of elements that have metallic properties.
- Steel increased strength because of the mixture of iron and carbon or Mn, Cr, V, W.
- <u>Substitutional</u> alloys some of the atoms are replaced by other atoms of similar size (sterling silver)
- Interstitial alloys small holes in a metallic crystal are filled with smaller atoms (steel)

Review Questions

- What are the properties of ionic compounds?
- What are the properties of metallic compounds?

• What is the electron sea model?

• Explain the difference between substitutional and interstitial alloys.